Identifying a resistance determinant for the antimitotic natural products disorazole C1 and A1.
نویسندگان
چکیده
Disorazoles are macrocyclic polyketides first isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. Both the major fermentation product disorazole A(1) and its much rarer companion disorazole C(1) exhibit potent cytotoxic activity against many human tumor cells. Furthermore, the disorazoles appear to bind tubulin uniquely among known antimitotic agents, promoting apoptosis or premature senescence. It is uncertain what conveys tumor cell sensitivity to these complex natural products. Therefore, we generated and characterized human tumor cells resistant to disorazole C(1). Resistant cells proved exceedingly difficult to generate and required single step mutagenesis with chronic stepwise exposure to increasing concentrations of disorazole C(1). Compared with wild-type HeLa cells, disorazole C(1)-resistant HeLa/DZR cells were 34- and 8-fold resistant to disorazole C(1) and disorazole A(1) growth inhibition, respectively. HeLa/DZR cells were also remarkably cross-resistant to vinblastine (280-fold), paclitaxel (2400-fold), and doxorubicin (47-fold) but not cisplatin, suggesting a multidrug-resistant phenotype. Supporting this hypothesis, MCF7/MDR cells were 10-fold cross-resistant to disorazole C(1). HeLa/DZR disorazole resistance was not durable in the absence of chronic compound exposure. Verapamil reversed HeLa/DZR resistance to disorazole C(1) and disorazole A(1). Moreover, HeLa/DZR cells expressed elevated levels of the drug resistance ATP-binding cassette ABCB1 transporter. Loss of ABCB1 by incubation with short interfering RNA restored sensitivity to the disorazoles. Thus, the multidrug resistance transporter ABCB1 can affect the cytotoxicity of both disorazole C(1) and A(1). Disorazole C(1), however, retained activity against cells resistant against the clinically used microtubule-stabilizing agent epothilone B.
منابع مشابه
Identifying a Resistance Determinant for the Antimitotic Natural Products Disorazole C1 and A1 □S
Disorazoles are macrocyclic polyketides first isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. Both the major fermentation product disorazole A1 and its much rarer companion disorazole C1 exhibit potent cytotoxic activity against many human tumor cells. Furthermore, the disorazoles appear to bind tubulin uniquely among known antimitotic agents, promoting apoptosis...
متن کاملMicrotubule Binding and Disruption and Induction of Premature Senescence by Disorazole C1 □S
Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. The major fermentation product, disorazole A1, was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells, possibly because of its highly electrophilic epoxide moiety. To test this hypothesis, we synthesiz...
متن کاملIsolation, biology and chemistry of the disorazoles: new anti-cancer macrodiolides.
Covering: 1994 to 2008. The disorazoles comprise a family of 29 closely related macrocyclic polyketides isolated in 1994 from the fermentation broth of the gliding myxobacterium Sorangium cellulosum. Disorazoles A1, E and C1 have shown exceptional biological activites toward inhibiting the proliferation of human cancer cell lines in picomolar and nanomolar concentrations through the disruption ...
متن کاملSelf‐Assembly of Disorazole C1 through a One‐Pot Alkyne Metathesis Homodimerization Strategy†
Alkyne metathesis is increasingly explored as a reliable method to close macrocyclic rings, but there are no prior examples of an alkyne-metathesis-based homodimerization approach to natural products. In this approach to the cytotoxic C2-symmetric marine-derived bis(lactone) disorazole C1, a highly convergent, modular strategy is employed featuring cyclization through an ambitious one-pot alkyn...
متن کاملCatalytic Z-Selective Cross-Metathesis in Complex Molecule Synthesis: A Convergent Stereoselective Route to Disorazole C1
A convergent diastereo- and enantioselective total synthesis of anticancer and antifungal macrocyclic natural product disorazole C1 is reported. The central feature of the successful route is the application of catalytic Z-selective cross-metathesis (CM). Specifically, we illustrate that catalyst-controlled stereoselective CM can be performed to afford structurally complex Z-alkenyl-B(pin) as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 332 3 شماره
صفحات -
تاریخ انتشار 2010